Calculating pH and pOH Practice 1

Use mental math shortcuts for calculating pH and pOH to solve the problems below. If you get stuck, try the Logs and Antilogs Practice 1 worksheet as a handy warmup.

1) What is the pH of 2 moldm ${ }^{-3} \mathrm{HCl}$?
2) What is the pH of 2 moldm ${ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$?
3) What is the pH of 1×10^{-3} moldm ${ }^{-3} \mathrm{HNO}_{3}$?
4) What is the pH of 2 moldm $^{-3} \mathrm{NaOH}$?
5) What is the pH of 0.25 moldm $^{-3} \mathrm{Ca}(\mathrm{OH})_{2}$?
6) What is the pH of 5×10^{-3} moldm ${ }^{-3} \mathrm{KOH}$?
7) What is the pH of a mixture of $50 \mathrm{~cm}^{3} 0.1 \mathrm{moldm}^{-3} \mathrm{HCl}$ and $30 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$?

Calculating pH and pOH Practice 1

Solutions

Keep in mind:

$14=\mathrm{pH}+\mathrm{pOH}$	$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$	$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$-\log \left(1 \times 10^{-3}\right)=3$	$-\log \left(1 \times 10^{3}\right)=-3$	
$-\log \left(3 \times 10^{-x}\right)=\mathrm{x.5}$	$-\log \left(5 \times 10^{-x}\right)=\mathrm{x.3}$	$-\log \left(8 \times 10^{-x}\right)=\mathrm{x} .1$

1) What is the pH of 2 moldm ${ }^{-3} \mathrm{HCl}$?
$2=2 \times 10^{0}$
$\mathrm{pH}=-\log \left[2 \times 10^{0}\right]$
Therefore pH is between -1 and 0 .
2 is between 1 and 3 . Therefore pH is -1 plus a number approx. in the range 0.5 to 1 . Estimate 0.7 ish. $-1+0.7=-0.3$
With a calculator, answer is -0.3 .
2) What is the pH of 2 moldm ${ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$?
$\mathrm{H}_{2} \mathrm{SO}_{4}$ donates two H^{+}ions, unlike 1 for the other acids featured in this worksheet. Therefore $\left[\mathrm{H}^{+}\right]=2 \times 2 \mathrm{moldm}^{-3}$
$\mathrm{pH}=-\log (4)=-\log \left(4 \times 10^{0}\right)$
Again, pH will be between -1 and 0 .
4 is between 3 and 5 . pH will be -1 plus a number in the range 0.3 to 0.5.
Estimate 0.4 ish. $-1+0.4=-0.6$
With a calculator, answer is -0.6
3) What is the pH of $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$?
$\mathrm{pH}=-\log \left(1 \times 10^{-3}\right)=3$
4) What is the pH of $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$?
$2=2 \times 10^{0}$
$\mathrm{pOH}=-\log \left[2 \times 10^{0}\right]$
Therefore pOH is between -1 and 0 .
2 is between 1 and 3 . Therefore pOH is -1 plus a number approx. in the range 0.5 to 1 . Estimate 0.7. $-1+0.7=-0.3$
With a calculator, answer is -0.3 .

Calculating pH and pOH Practice 1

$\mathrm{pH}=14-\mathrm{pOH}$
Therefore $14-(-0.3)=14.3$
5) What is the pH of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ca}(\mathrm{OH})_{2}$?

Base has two hydroxide ions per molecule, therefore can receive two protons. $[\mathrm{OH}-]=2 \times 0.25=0.5 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pOH}=-\log (0.5)=-\log \left(5 \times 10^{-1}\right)=0.3$
$\mathrm{pH}=14-0.3=13.7$
6) What is the pH of $5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$?
$\mathrm{pOH}=-\log \left(5 \times 10^{-3}\right)=3.3$
$\mathrm{pH}=14-3.3=10.7$
7) What is the pH of a mixture of $50 \mathrm{~cm}^{3} 0.1 \mathrm{moldm}^{-3} \mathrm{HCl}$ and $30 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$?
Total volume of the solution is now $50 \mathrm{~cm}^{3}+30 \mathrm{~cm}^{3}=80 \mathrm{~cm}^{3}$
The acid and base are the same concentration. But different volumes.
Therefore $30 \mathrm{~cm}^{3}$ of NaOH will be neutralised by $30 \mathrm{~cm}^{3}$ (out of 50 cm^{3}) of HCl , leaving $20 \mathrm{~cm}^{3}$ of HCl left unreacted.
HCl^{\prime} s original concetration was $0.1 \mathrm{moldm}^{-3}$, but it will now be diluted by 4 because $20 \mathrm{~cm}^{3}$ is left unreacted of HCl and it is in $80 \mathrm{~cm}^{3}$ total. $(20 / 80=4)$.
$\mathrm{HCl}^{\prime} \mathrm{s}$ new concentration is $0.1 / 4=0.025$ moldm $^{-3}$
$\mathrm{pH}=-\log \left(2.5 \times 10^{-2}\right) \approx 1.5$ (actual answer is 1.6)

