

Calculating pH and pOH Practice 1

Use mental math shortcuts for calculating pH and pOH to solve the problems below. If you get stuck, try the *Logs and Antilogs Practice 1* worksheet as a handy warmup.

- 1) What is the pH of 2 moldm⁻³ HCl?
- 2) What is the pH of 2 moldm⁻³ H_2SO_4 ?
- 3) What is the pH of $1x10^{-3}$ moldm⁻³ HNO₃?
- 4) What is the pH of 2 moldm⁻³ NaOH?
- 5) What is the pH of 0.25 moldm⁻³ Ca(OH)₂?
- 6) What is the pH of 5×10^{-3} moldm⁻³ KOH?
- 7) What is the pH of a mixture of 50cm³ 0.1moldm⁻³ HCl and 30cm³ of 0.1moldm⁻³ NaOH?

www.GraduateMedicineSuccess.com

© Graduate Medicine Success 2017

Calculating pH and pOH Practice 1

Solutions

Keep in mind:

14 = pH + pOH-log (1x10⁻³) = 3 -log(3x10^{-x}) = x.5 $pH = -log [H^+]$ -log (1x10³) = -3 -log(5x10^{-x}) = x.3 $pOH = -log [OH^-]$

 $-\log(8 \times 10^{-x}) = x.1$

- 1) What is the pH of 2 moldm⁻³ HCl?
 2 = 2 x 10⁰ pH = -log[2x10⁰] Therefore pH is between -1 and 0.
 2 is between 1 and 3. Therefore pH is -1 plus a number approx. in the range 0.5 to 1. Estimate 0.7 ish. -1 + 0.7 = -0.3 With a calculator, answer is -0.3.
- 2) What is the pH of 2 moldm⁻³ H₂SO₄? H₂SO₄ donates two H⁺ ions, unlike 1 for the other acids featured in this worksheet. Therefore [H⁺] = 2x2moldm⁻³ pH = -log (4) = -log(4 x10⁰) Again, pH will be between -1 and 0. 4 is between 3 and 5. pH will be -1 plus a number in the range 0.3 to 0.5. Estimate 0.4 ish. -1 + 0.4 = -0.6 With a calculator, answer is -0.6
- 3) What is the pH of $1x10^{-3}$ mol dm⁻³ HNO₃? pH = $-\log(1x10^{-3}) = 3$
- 4) What is the pH of 2 mol dm⁻³ NaOH?
 2 = 2 x 10⁰
 pOH = -log[2x10⁰]
 Therefore pOH is between -1 and 0.
 2 is between 1 and 3. Therefore pOH is -1 plus a number approx. in the range 0.5 to 1. Estimate 0.7. -1 + 0.7 = -0.3
 With a calculator, answer is -0.3.

www.GraduateMedicineSuccess.com

GAMSAT tutoring | Interviews coaching | Free resources © Graduate Medicine Success 2017

Calculating pH and pOH Practice 1

pH = 14 - pOHTherefore 14 - (-0.3) = 14.3

- 5) What is the pH of 0.25 mol dm⁻³ Ca(OH)₂? Base has two hydroxide ions per molecule, therefore can receive two protons. [OH-] = $2 \times 0.25 = 0.5$ mol dm⁻³ pOH = $-\log (0.5) = -\log (5 \times 10^{-1}) = 0.3$ pH = 14 - 0.3 = 13.7
- 6) What is the pH of 5 $\times 10^{-3}$ mol dm⁻³ KOH? pOH = -log (5 $\times 10^{-3}$) = 3.3 pH = 14-3.3 = 10.7
- 7) What is the pH of a mixture of 50cm³ 0.1moldm⁻³ HCl and 30cm³ of 0.1moldm⁻³ NaOH?

Total volume of the solution is now $50 \text{ cm}^3 + 30 \text{ cm}^3 = 80 \text{ cm}^3$ The acid and base are the same concentration. But different volumes.

Therefore 30 cm³ of NaOH will be neutralised by 30cm³ (out of 50 cm³) of HCl, leaving 20 cm³ of HCl left unreacted.

HCl's original concetration was 0.1 moldm⁻³, but it will now be diluted by 4 because 20 cm³ is left unreacted of HCl and it is in 80 cm³ total. (20/80 = 4).

HCl's new concentration is 0.1/4 = 0.025 moldm⁻³ pH = -log (2.5 x 10⁻²) \approx 1.5 (actual answer is 1.6)

www.GraduateMedicineSuccess.com

GAMSAT tutoring | Interviews coaching | Free resources © Graduate Medicine Success 2017