

Calculating pH and pOH

Use mental math shortcuts for calculating pH and pOH to solve the problems below. If you get stuck, try the *Logs and Antilogs Practice 1* worksheet as a handy warmup.

- 1) What is the pH of 2 moldm⁻³ HCl?
- 2) What is the pH of 2 moldm⁻³ H₂SO₄?
- 3) What is the pH of $1x10^{-3}$ moldm⁻³ HNO₃?
- 4) What is the pH of 2 moldm⁻³ NaOH?
- 5) What is the pH of 0.25 moldm⁻³ Ca(OH)₂?
- 6) What is the pH of $5x10^{-3}$ moldm⁻³ KOH?
- 7) What is the pH of a mixture of 50cm³ 0.1moldm⁻³ HCl and 30cm³ of 0.1moldm⁻³ NaOH?

Calculating pH and pOH

Solutions

Keep in mind:

```
14 = pH + pOH pH = -log [H^+] pOH = -log [OH^-] -log (1x10^-3) = 3 -log (5x10^-x) = x.3 -log (8x10^-x) = x.1
```

1) What is the pH of 2 moldm⁻³ HCl?

$$2 = 2 \times 10^{0}$$

pH = $-\log[2 \times 10^{0}]$

Therefore pH is between -1 and 0.

2 is between 1 and 3. Therefore pH is -1 plus a number approx. in the range 0.5 to 1. Estimate 0.7 ish. -1 + 0.7 = -0.3 With a calculator, answer is -0.3.

2) What is the pH of 2 moldm⁻³ H₂SO₄?

 H_2SO_4 donates two H^+ ions, unlike 1 for the other acids featured in this worksheet. Therefore $[H^+]=2x2moldm^{-3}$ pH = -log (4) = -log(4 $x10^{0)}$ Again, pH will be between -1 and 0.

4 is between 3 and 5. pH will be -1 plus a number in the range 0.3 to 0.5.

Estimate 0.4 ish. -1 + 0.4 = -0.6With a calculator, answer is -0.6

- 3) What is the pH of 1×10^{-3} mol dm⁻³ HNO₃? pH = $-\log(1 \times 10^{-3}) = 3$
- 4) What is the pH of 2 mol dm⁻³ NaOH?

```
2 = 2 \times 10^{0}
```

 $pOH = -log[2x10^0]$

Therefore pOH is between -1 and 0.

2 is between 1 and 3. Therefore pOH is -1 plus a number approx. in the range 0.5 to 1. Estimate 0.7. -1 + 0.7 = -0.3 With a calculator, answer is -0.3.

Calculating pH and pOH

$$pH = 14 - pOH$$

Therefore $14 - (-0.3) = 14.3$

- 5) What is the pH of 0.25 mol dm⁻³ Ca(OH)₂? Base has two hydroxide ions per molecule, therefore can receive two protons. [OH-] = $2 \times 0.25 = 0.5 \text{ mol dm}^{-3}$ pOH = $-\log (0.5) = -\log (5 \times 10^{-1}) = 0.3$ pH = 14 0.3 = 13.7
- 6) What is the pH of $5 \times 10^{-3} \text{ mol dm}^{-3} \text{ KOH?}$ pOH = $-\log (5 \times 10^{-3}) = 3.3$ pH = 14-3.3 = 10.7
- 7) What is the pH of a mixture of 50cm³ 0.1moldm⁻³ HCl and 30cm³ of 0.1moldm⁻³ NaOH?

Total volume of the solution is now $50 \text{cm}^3 + 30 \text{cm}^3 = 80 \text{cm}^3$ The acid and base are the same concentration. But different volumes.

Therefore 30 cm³ of NaOH will be neutralised by 30cm³ (out of 50 cm³) of HCl, leaving 20 cm³ of HCl left unreacted.

HCl's original concetration was 0.1moldm^{-3} , but it will now be diluted by 4 because 20 cm^3 is left unreacted of HCl and it is in 80cm^3 total. (20/80 = 4).

HCl's new concentration is $0.1/4 = 0.025 \text{ moldm}^{-3}$ pH = -log $(2.5 \times 10^{-2}) \approx 1.5$ (actual answer is 1.6)