

For a quick revision of the blood buffer system, watch this: https://www.youtube.com/watch?v=5_S5wZks9v8. Before attempting the GAMSAT-style questions, I recommend revising acid-base chemistry, including buffers and the Henderson-Hasselbalch equation.

Please provide feedback on this resource so I can improve it! Feedback link - https://www.surveymonkey.co.uk/r/JQBRC2K

Wa

arm-up Questions:	
1)	Fill in the blanks:
	In human blood, the pH must be kept between pH and Therefore, our blood is slightly a pH is controlled using the b buffer system.
2)	Two equilibrium reactions occur as part of the blood's buffer system. What are they? How can we write them to show they are simultaneous and linked?
3)	Delete as appropriate:
	H2CO3 is a weak/strong acid. It forms when O2/CO2 dissolved in the blood reacts with water. Levels of H2CO3 in the blood are principally controlled by respiration/perspiration/inflammation.
	When we breathe out CO ₂ , the equilibrium moves to the right/left and H ₂ CO ₃ levels decrease/increase. Excess HCO ₃ is excreted in sweat/breath/urine by the kidneys.
	It is important for the blood pH to stay within a certain range because even slight deviations can cause organ damage/disease/death/all listed options

GAMSAT-style questions:

The pH of the blood can be estimated using the Henderson-Hasselbalch equation given below:

$$\mathbf{pH} = \mathbf{p}K_{\mathbf{a}} + \log_{10}\left(\frac{[\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}\right)$$

HA represents an acid and A represents its conjugate base.

The bicarbonate buffering system operates in the blood to keep it at approximately pH 7.4. The equilibria are as follows

$$H^{+}(aq) + HCO_{3}^{-}(aq) \longrightarrow H_{2}CO_{3}(aq) \longrightarrow H_{2}O_{(1)} + CO_{2}(g)$$

Question 1

If the ratio of H2CO3 to HCO3 in the blood is 2 to 20, what is the most accurate approximation of pKa?

- A. 7.35
- B. 9.4
- C. 5.4
- D. 6.4

Question 2

The pH is found to be 7.2 and the pKa of H2CO3 is 6.1.

What is the ratio of H2CO3 to HCO3⁻?

A. 6:1

B. 1:1.6

C. 1.1:1

D. 1:1.1

Question 3

H2CO3 forms when CO2 gas dissolved in the blood reacts with water. The following equation relates the partial pressure of CO2 (pCO2), pH and HCO3⁻ concentration

$$pH = 6.1 + \mathrm{log} \Bigg(rac{[HCO_{\overline{3}}]}{0.03 imes pCO_2} \Bigg)$$

If pCO2 is 100 mmHg and the concentration of H2CO3 is 3 mmol/L, what is the pH of the blood?

A. 6.1

B. 7.1

C. 7.4

D. 6.4

Solutions

Warm-up questions:

- In human blood, the pH must be kept between pH 7.35 and 7.45. Therefore, our blood is slightly alkaline. pH is controlled using the bicarbonate buffer system.
- 2. Two equilibrium reactions occur as part of the blood's buffer system. You can write them as follows:

$$H^{+}(aq) + HCO_{3}^{-}(aq) \longrightarrow H_{2}CO_{3}(aq) \longrightarrow H_{2}O_{(1)} + CO_{2}(g)$$

3. H2CO3 is a weak acid. It forms when CO2 dissolved in the blood reacts with water. Levels of H2CO3 in the blood are principally controlled by respiration.

When we breathe out CO₂ the equilibrium moves to the right and H₂CO₃ levels decrease. Excess HCO₃- is excreted in urine by the kidneys.

It is important for the blood pH to stay within a set range because even slight deviations can cause organ damage, disease and even death (all listed options).

GAMSAT-style questions:

1) D (6.4)

[carbonate]/[carbonic acid] = 20/2 = 10 log₁₀(10) = 1 Substitute data in H-H equation and solve... 7.4 = pKa + 1 pKa = 7.4 - 1 = 6.4

2) D (1:1.1)

Substitute data into H-H equation and solve... 7.2 = 6.1 + [carbonate]/[carbonic acid] [carbonate]/[carbonic acid] = 7.2 - 6.1 = 1.1 1.1 = 1.1/1

3) A (6.1)

 $0.03 \times 100 = 3$ Therefore [carbonate]/ $(0.03 \times pCO_2) = 3/3 = 1$ $log_{10}(1) = 0$ Therefore pH = 6.1 + 0 = 6.1